If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12w-6w^2=0
a = -6; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·(-6)·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*-6}=\frac{-24}{-12} =+2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*-6}=\frac{0}{-12} =0 $
| 5y+8=-20-3y | | 31.2x+15.6x^2=5.2 | | 31.2x+15.6x=5.2 | | 1/2x+4.5=8 | | 19+19+2x+4=180,x | | 4(-2)+12x=-36 | | 4y+12(-5)=-36 | | 6x+12-9=117 | | 4y+12(-2)=-36 | | 1/3u-1/2=-1/5 | | 14p−9p=20 | | 5×2+2(3x-1)=55 | | -1/3-1/2w=2/7 | | 6(x-3)=3(7x+6) | | 2,340,000=0.60x0.45x-2,530,800 | | 2,340,000=0.60x{0.45x-2,530,800} | | H(t)=-16(t)+50(t)+5 | | (x+2)/5=3 | | 40=8÷5y | | 1/3a-4=9=7 | | 2x+20=4x-6 | | y=-3y+18 | | h/6-1=-13 | | 2^x=7777 | | 8y+(3+4=31) | | 20=20-3e-9 | | 5x^2-20=20x | | 9c^2+72=0 | | 2a-7a=5 | | 8q^2-9q+7=0 | | 150=-7r+10 | | (5x^2-180)=0 |